Landslide and Alluvial Fan Activity Due to Tropical Storm Irene:

Examples from Money Brook, Black River Watershed, VT

GSA Northeastern Section 50 th Annual Meeting
Bretton Woods, New Hampshire
23 March 2015

Kristen L. Underwood, South Mountain R\&CS, Bristol, VT George Springston, Norwich University, Northfield, VT

Base Maps: Killington Peak (1961/1983),
 Plymouth (1966/1983), Mount Holly (1986) \& Ludlow (1971) USGS 7.5-Min Topographic Quadrangles

Map Prepared by: Kristen L Underwood, PG South Mountain R\&CS, September 2013

Legend

\square Major Streams
Money Brook Watershed

Watershed Delineation
Money Brook / Pingree Flats 4181 Route 100, Plymouth, VT

Base Image: May 1, 2011
Map Prepared by: Kristen L Underwood, PG South Mountain R\&CS, September 2013

Legend

-Major Streams
Money Brook Watershed

Money Brook Watershed
Money Brook / Pingree Flats 4181 Route 100, Plymouth, VT

Tropical Storm Irene

- 28-29 August 2011
- State Infrastructure damage
- > 500 miles roads
- > 200 bridges
- Town Infrastructure damage
- 2,800 road segments
- 280 bridges
- 960 culverts
(Pealer, 2011)

Tropical Storm Irene: 28-29 August 2011

September 2011, Mansfield Heliflight

Coarse Sediment events

- 3 to 4 times per century

Midge Tucker

Historic Flood Damages and Channel Management

Table 1. Historic Floods of Significance Impacting the upper Black River over the last 100 years.

Event	AEP	Notes	Data Source
$\begin{aligned} & \text { 2011, August } \\ & 28-29 \end{aligned}$	<1\%	Tropical Storm Irene, Debris over Route 100 and on Pingree lands west and east of Rt 100 . Similar impacts to Tucker residence. Bridge 108 overwhelmed. Channel dredged upstream and downstream of Rt 100. Sediment / debris trucked from Pingree Flats. Channel later dredged in Fall of 2011 and again before TS Sandy in 2012.	Kiah, et al., 2013 Town of Plymouth Menees, 2013 Pingree, 2013 Tucker, 2013
1976, August	>5\%	Flood debris over Route 100 at Money Brook. Sediment "plowed" from Route 100.	VTDEC WQD, 1999 Town of Plymouth Pingree, 2013
1973, June	$\begin{aligned} & \hline 1- \\ & 4 \% \end{aligned}$	Flood debris over Route 100 at Money Brook. Sediment "plowed" from Route 100. Estimated 25 -year storm (Figure 12) to $100-\mathrm{yr}$ storm (Appendix C).	USGS, 1990; VTDEC WQD, 1976; Town of Plymouth; Pingree, 2013
1952, June	7\%	Estimate 15-year storm; (Figure 11)	USGS, 2013
1938, September	4\%	Likely debris over Rt 100. Est. 25 -yr storm (Fig 11, 12) "The road from Plymouth to Bridgewater Corners was heavily eroded."	USGS, 2013; USGS, 1990
1936, March	4\%	Estimated 25-year storm, (Figure 11, 12).	USGS, 2013
1927, Nov 3-7	<1\%	Largest flood on record in Vermont. Very likely debris over Rt 100. Significant damages in Ludlow, Cavendish, Springfield, Plymouth.	USGS, 1990; Harris, 1949; Minsinger, 2003; Gay, 1927

AEP = Annual Exceedance Probability. For example, 100-year flood has an AEP of 1%, or a 1% probability of occurring in any given year.

Fine Sediment events - chronic

Mansfield Heliflight, September 2011

Mansfield Heliflight, September 2011

Echo Lake

Underwood, April 2013

Longitudinal Profile

Figure prepared by Fitzgerald Environmental Associates

Money Brook Hydrology

Comparison to measured peak flows from similar watersheds

Money Brook Hydrology

Comparison to measured peak flows from similar watersheds

- Area-adjusted flow for Money Brook $=674$ cfs

Peak Flow

No.	Station	Station Name	Drainage Area, DA $\left(\mathrm{mi}^{2}\right)$	Gage Elevation $(\mathrm{ft} \mathrm{amsl})^{1}$	$\begin{array}{r} \text { \% Basin } \\ \text { area } \\ \text { above } \\ 1200 \mathrm{ft}^{2} \end{array}$	Mean Ann Pptn $(\mathrm{in})^{2}$	TS Irene Peak Flow $(\mathrm{cfs})^{3}$	Peak Flow Adjusted to Money Brook DA (cfs)
		Money Brook	1.2	1,158	98.1			
		Third Branch White River						
1	01142400	Tributary at Randolph, VT	0.77	690	55.3	39.6	117	182
2	01150800	Kent Brook Near Killington, VT Ottauquechee River Tributary	3.31	1,560	100	55	2,840	1,030
3	01151200	Near Quechee, VT Middle Branch Williams River	0.82	670	8.7	38.8	59	86
4	01153300	Tributary at Chester, VT	3.16	622	56.4	43	602	229
5	01155350	West River Tributary at Rt 30, Near Jamaica, VT	0.9	1,230	100	47.3	239	319
Geometric Mean:								

References

1 USGS, 2013, on-line surface water data, http://waterdata.usgs.gov/vt/nwis. (for elevation data)
2 Olson, 2002; Table 8
3 Kiah et al., 2013

Money Brook Hydrology

HydroCad ${ }^{\text {TM }}$
Distribution of Hydrologic Soil Groups - 78\% C \& D soils
Estimated Peak Flows

Rainfall		TR20 Model
Event (in)	Short SCF	Long SCF
	64	51
2-year (2.5)	89	69
10-year (3.7)	297	225
100-year (5.9)	825	621
TS Irene (7.0)	1,124	846

Figure preparation and HydroCAD analysis by Fitzgerald Environmental Associates, LLC

Money Brook Hydrology

$$
V=0.18 * d^{0.49}
$$

Flood Competence Estimates (after Costa, 1983)

- $7.5 \mathrm{~m} / \mathrm{s}(25 \mathrm{ft} / \mathrm{sec})$ peak velocity during TS Irene
where, $\quad V=$ velocity, in m / s $\mathrm{d}=$ median clast diameter, in mm

Costo 1. 983. Paleoh draulic reconstruction of flas h ood peaks from boulder deposits in the colorado
Front Range: Geolec eal Sóciety of America, Bulletura, 94t p. 986,1004

Money Brook hydrology - slopes, stream power

Landslide assessment

field protocol developed by Clift and Springston (2012)

Left: Looking upstream at MB-10. Bedrock can be seen on the left side of the photo (on the right side of the channel).

Right: Looking downstream at MB-10. Note abundant boulders, the source material for the boulders on the alluvial fan.

General Characteristics of Major Landslides at Money Brook

Estimate of Volume Change of Landslides at Money Brook from 1996 to 2012

	Area (sq. ft)	Depth (ft)	Volume (cubic feet)	Volume (cubic yards)
Landslide Section	43,551	18.2	792,628	29,356
North Side, Lidar	76,521	18.2	$1,392,682$	51,581
North Side, No Lidar	35,113	9.1	319,528	11,834
South Side, No Lidar			$2,504,838$	92,771
Sum				

For the landslide on the north side with lidar, depth is measured change in elevation between 1996 and 2012.
This same depth was used for the portion of the north side without lidar.
For south side without lidar, the above figure was cut in half. This is consistent with the observed depth of erosion at this landslide.

> Total estimate for landslide volume change $=92,772$ cubic yards $\left(71,100 \mathrm{~m}^{3}\right)$

Estimate of Volume of Material Deposited on Money Brook Alluvial Fan

Volume of Sector of Cone:
$V_{1}=1.0472 r^{2} h_{1}\left(\Delta / 360^{\circ}\right)$
$V_{1}=$ volume in cubic feet
$r=$ radius $=1200$ feet
$h_{1}=$ height of cone $=5$ feet
$\Delta=$ segment of cone $=50^{\circ}$
$V_{1}=1,057,284$ cubic feet

Volume of Sector of Disk:
$V_{2}=0.008727 \Delta r^{2} h_{2}$
$V_{2}=$ volume in cubic feet
$r=$ radius $=1200$ feet
$h_{2}=$ height of disk $=1.5$ feet
$\Delta=$ segment of cone $=50^{\circ}$
$V_{2}=942,516$ cubic feet

Total volume estimate for deposit on fan $=1,989,800$ cubic feet $=73,696$ cubic yards $\left(56,600 \mathrm{~m}^{3}\right)$

Debris Jam \#2 (240 CY)

Acknowledgments

- Evan Fitzgerald, Fitzgerald Environmental Associates, LLC, Colchester, VT
- Roy Schiff, Milone \& MacBroom, Inc., Waterbury, VT
- Chris Lathrop, DuBois \& King, Inc., South Burlington, VT
- Paul Libby, Vtrans
- Marie Caduto, VTDEC Watershed Management Division
- Pingree Family
- Lake Rescue Association
- Funding from VT Agency of Natural Resources Ecosystem Restoration Grant

Questions?

